Vc  1.4.1
SIMD Vector Classes for C++
Finite Differences

Finite difference method example

We calculate central differences for a given function and compare it to the analytical solution.

#include <Vc/Vc>
#include <iostream>
#include <iomanip>
#include <cmath>
#include "../tsc.h"
static constexpr std::size_t N = 10240000, PrintStep = 1000000;
static constexpr float epsilon = 1e-7f;
static constexpr float lower = 0.f;
static constexpr float upper = 40000.f;
static constexpr float h = (upper - lower) / N;
// dfu is the derivative of fu. This is really easy for sine and cosine:
static inline float fu(float x) { return ( std::sin(x) ); }
static inline float dfu(float x) { return ( std::cos(x) ); }
static inline Vc::float_v fu(Vc::float_v::AsArg x) {
#ifdef USE_SCALAR_SINCOS
for (size_t i = 0; i < Vc::float_v::Size; ++i) {
r[i] = std::sin(x[i]);
}
return r;
#else
return Vc::sin(x);
#endif
}
static inline Vc::float_v dfu(Vc::float_v::AsArg x) {
#ifdef USE_SCALAR_SINCOS
for (size_t i = 0; i < Vc::float_v::Size; ++i) {
r[i] = std::cos(x[i]);
}
return r;
#else
return Vc::cos(x);
#endif
}
Vc::free(dy_points - float_v::Size + 1);
return 0;
}